根管冲洗的研究进展
黄丽东, 宫玮玉, 董艳梅
北京大学口腔医学院•口腔医院牙体牙髓病科 北京 100081
[通信作者] 宫玮玉,主治医师,博士,Email:kqgongweiyu@163.com

[作者简介] 黄丽东,博士,Email:huanglidong2011@sina.com

摘要

根管冲洗是根管预备不可缺少的环节,有效的根管冲洗依赖于冲洗药物和技术的不断革新。目前,许多学者以提高根管冲洗效果和清除根管内感染为目的,对冲洗药物和技术进行了大量研究。通过改善冲洗剂的性能、联合使用不同冲洗剂,根管内的感染微生物、玷污层及内毒素等得到更有效的清除;通过应用根管冲洗辅助方法、开发根管冲洗新技术,根管冲洗剂得到更好的输送和活化,根尖部的清洁效率得以提高,增强根管系统的化学预备效果。本文就根管冲洗药物、根管冲洗方法及技术的研究进展作一综述。

关键词: 根管冲洗; 根管治疗; 根管消毒
中图分类号:R781.05    文献标志码:A      
Research progress on root canal irrigation
Huang Lidong, Gong Weiyu, Dong Yanmei.
Dept. of Conservative Dentistry and Endodontics, School and Hospital of Stomatology, Peking University, Beijing 100081, China
Abstract

Root canal irrigation is an indispensable part of root canal preparation. Effective irrigation depends on the continuous development of irrigants and irrigation techniques. Recently, studies in irrigants and techniques have been carried out to improve the effect of irrigation and disinfection. Microorganisms, smear layer and lipopolysaccharide within root canal can be removed at a larger degree by means of improving the performance of irrigants and combined using different irrigants. And with the aid of supplementary methods and new techniques, irrigants can be better delivered and agitated, which induces higher cleaning efficiency in apical third and enhanced effect of chemical preparation in root canal system. This paper reviewed the research progress on root canal irrigants, irrigation methods and techniques.

Keyword: root canal irrigation; root canal treatment; root canal disinfection

根管冲洗是根管预备的必要环节, 根管冲洗药物和技术的进步对提高冲洗效果和根管治疗成功率起到重要作用。本文介绍了根管冲洗药物、根管冲洗方法及新技术的研究进展, 为临床工作提供参考。

1 根管冲洗药物

理想的根管冲洗药物应具备以下特点:1)良好的抗菌作用; 2)可溶解坏死牙髓组织和玷污层; 3)降低细菌内毒素活性; 4)润滑根管; 5)有良好的生物相容性; 6)无异味及使用方便等。目前常用的冲洗剂主要分为抗菌剂[如次氯酸钠、氯己定(chlorhexidine, CHX)]、脱钙剂[如乙二胺四乙酸(ethylene diaminetetraaceticacid, EDTA)]、组合成分(如QMix)、天然药物4种。不同药物特点各异, 联合使用也会产生不同效果。因此, 根管冲洗药物的选择和使用策略是实现根管冲洗预期目标的关键, 如何改善其性能、充分发挥优越性也是当前研究热点之一。

1.1 次氯酸钠

1.1.1 作用原理及冲洗效果 次氯酸钠以其高效杀菌、溶解有机组织等突出性能, 成为临床最常用的冲洗剂。其最主要作用方式是通过水解形成次氯酸, 再进一步分解成新生态氧, 使细菌和病毒蛋白变性, 从而发挥广谱杀菌作用。此外, 次氯酸钠还通过以下3种反应溶解有机物:通过皂化反应将脂肪酸降解转化为脂肪酸盐和甘油; 中和氨基酸生成水和盐; 通过氯和氨基的氯胺化作用干扰微生物细胞代谢[1]。许多体内外实验[2, 3, 4, 5]均证实, 次氯酸钠能够有效减少根管内粪肠球菌等感染的数量, 具有良好的抗菌效果。

1.1.2 改善性能 游离有效氯是次氯酸钠抗菌的基础。根管内的感染由粪肠球菌为主的微生物组成, 以生物膜形式附着于牙本质小管, 生物膜中的胞外聚合物能够抵抗冲洗剂, 适应根管内碱性、缺氧等恶劣条件, 进而造成根管内外持续感染。因此, 增加次氯酸钠对牙本质小管的渗透深度和对生物膜的破坏能够提高其抗菌效能。

1)调节溶液浓度、pH值。次氯酸钠用于根管冲洗的浓度为0.5%~6%, 增加浓度有利于提高抗菌性、有机物溶解能力和溶液稳定性, 但同时组织毒性也会增大。Siqueira等[3]发现, 分别使用7 mL 1%、2.5%、5.25%次氯酸钠来抑制粪肠球菌, 其效果无明显差异。由此认为, 足量、低浓度的次氯酸钠冲洗能够提供并维持足量的有效氯, 获得与高浓度相当的冲洗效果。

另一方面有学者[4, 5]发现, 将标准次氯酸钠溶液(pH值12)调至中性或弱碱性(pH值6~7.5)可显著增加有效氯含量, 增强抗菌效能。当次氯酸钠溶液的pH值低于7.5时, 其组织溶解能力会明显降低[6]。次氯酸钠溶液呈酸性时, 氯会以气体形式蒸发, 导致酸化溶液中有效氯减少, 抗菌效果无显著差异[7]。因此, 在避免溶液过酸的前提下, 适当降低溶液pH值可以增加有效氯含量, 提高抗菌效能。

2)添加质子泵抑制剂。在碱性环境中, 细菌细胞膜上的质子泵可将质子(H+)泵入胞内维持细胞质内酸碱平衡, 是微生物在碱性环境中维持生存的重要因素[8]。因此, 添加质子泵抑制剂有利于降低细菌对碱性冲洗剂的耐受性。

奥美拉唑是一种临床常用的质子泵抑制剂。8.5%奥美拉唑和5.2%次氯酸钠联合使用对粪肠球菌的抑制作用相比于2%CHX、MTAD(一种由强力霉素、柠檬酸和清洁剂组成的冲洗剂)表现出更为优越的抗菌性能[9]。Wagner等[10]的研究也显示, 奥美拉唑的抗炎和促修复作用能更有效促进大鼠的根尖周病变愈合。目前, 奥美拉唑的适用浓度、微生物鉴定及替代制剂有待进一步研究。

3)添加表面活性剂。感染根管中粪肠球菌能进入牙本质小管的深度约为800~1 000 μ m, 而45 ℃下6%次氯酸钠处理根管20 min, 能进入牙本质小管的最大深度仅为300 μ m[11]。次氯酸钠溶液表面张力高限制了溶液渗入牙本质小管和生物膜的深度。乙醇或者市售表面活性剂能降低表面张力, 提高次氯酸钠溶液对玻璃微电极的渗透性。研究[11]表明, 加入西曲溴铵(一种季铵盐类阳离子表面活性剂)后, 1%次氯酸钠的抗菌性与5%次氯酸钠相当。临界胶粒浓度的苯扎氯铵能将次氯酸钠的接触角减少51.2%, 表面能减少53.4%, 且对有效氯含量、细胞毒性及溶液性质不产生影

[12]。表面活性剂不改变氯的主要存在形式及溶液性质, 虽会与次氯酸钠反应降解有效氯, 但降低的有效氯浓度仍在可接受范围内, 因而能显著提高次氯酸钠对生物膜的清除能力[13, 14, 15]

1.2 CHX

1.2.1 作用原理及冲洗效果 CHX能对抗革兰阳性菌、革兰阴性菌及真菌, 低浓度(0.2%)亲脂性CHX分子可通过与细胞膜表面磷脂等相互作用进入胞内, 增加细胞壁通透性, 使细菌胞内钾、磷等大量流失, 改变细菌胞体内外的渗透压平衡。高浓度CHX(2%)则直接与胞质内容物反应, 导致细菌死亡。Rico-Romano等[16]对120位患者的根尖周炎患牙分别用5.25%次氯酸钠、2%CHX配合EndoActivator(一种能够激活根管冲洗剂的声波系统)、IRRIS超声锉进行根管冲洗, 结果显示:CHX能显著降低粪肠球菌数目, 且与5.25%次氯酸钠抗菌效果无显著性差异。同时, 2%CHX的抗真菌作用强于2.6%次氯酸钠; 可与牙本质结合并逐渐分解发挥抗菌活性, 持续约12周; 且毒性相对较低[17, 18, 19, 20, 21]。另外, Sinha等[22]在临床患者中选取了90颗患牙, 分别使用2%CHX凝胶、氢氧化钙以及2%CHX凝胶+氢氧化钙根管封药后发现, 2% CHX、2%CHX凝胶+氢氧化钙组的微生物含量都显著低于单独使用氢氧化钙组。

1.2.2 改善性能 CHX抗菌强效持久, 但组织溶解能力和渗透性差, 因此常与其他制剂联合使用以改善其性能。最早有研究提出CHX与次氯酸钠联合, 但后来证实两者相互反应产生含对氯苯胺的沉淀物。对氯苯胺是一种致癌剂, 可封闭牙本质小管, 难以用异丙醇、生理盐水清除, 因此若两者联合, 需在CHX使用前用H2O2或生理盐水去除次氯酸钠[23, 24]

H2O2能对抗细菌、病毒和酵母菌, 溶解有机物, 但作用较弱。CHX与H2O2联合可增加细胞壁对H2O2的通透性, 促进H2O2进入胞内发挥作用, 对粪肠球菌的抑制作用比单独使用CHX或次氯酸钠更有效, 以2%CHX+3%H2O2最强; 不同浓度CHX与3% H2O2混合溶液的细胞毒性均低于5.25%或2.5%次氯酸钠溶液, 具有较好的安全性[25]

阿立西定(alexidine, ALX)是一种与CHX结构类似的消毒剂, 其疏水性乙基己基末端可渗入膜脂质, 静电黏附于细胞膜阴极部位, 使其更有效的发挥杀菌活性。Barrios等[26]研究显示2%、1%ALX抗粪肠球菌作用比2%、0.5%CHX更持久。此外, ALX的抗菌活性不受次氯酸钠影响, 与次氯酸钠不形成沉淀。但ALX是否能替代CHX还需进一步研究。

1.3 EDTA

迄今, 对玷污层的彻底清除尚无一种冲洗剂能单独完成, 需要有机和无机2种冲洗剂联合应用。临床常用的组合是一定浓度次氯酸钠和17% EDTA。次氯酸钠能溶解有机成分, 但对无机物无溶解作用; 而EDTA是一种金属螯合剂, 可与羟磷灰石中钙离子形成络合物, 溶解无机成分。两者相互补充、增效, 可去除玷污层, 开放牙本质小管, 促进冲洗剂渗入, 去除牙本质小管深层的微生物。此外, EDTA的脱矿和次氯酸钠的脱蛋白作用可改变牙本质结构, 阻止微生物再定植, 促进对粪肠球菌生物膜的清除[27]

然而, EDTA和次氯酸钠联合应用会使牙本质脱矿, 导致牙本质微硬度下降[28, 29], 下降程度与钙离子损失量呈正相关, 取决于冲洗剂渗透

[30, 31]。EDTA/次氯酸钠虽侵蚀作用强, 但EDTA瓦解胶原基质, 限制次氯酸钠在牙本质小管中进一步扩散, 影响其对深层牙本质的侵蚀, 且碱性环境中游离钙离子易再沉淀, 因此在500 μ m深度上对牙本质硬度的改变与对有机物无溶解性的EDTA/CHX相比无明显差异[32, 33]。因此, 次氯酸钠和EDTA交替冲洗可作为主要方法, 但使用EDTA后不宜用次氯酸钠作最后冲洗, 以免造成更多牙本质侵蚀[34]

1.4 QMix

QMix是一种商品化新型组合成分冲洗剂, 主要成分包括EDTA、CHX和表面活性剂(包括西曲氯铵等), 其抗菌活性强于CHX, 与17%EDTA/2%CHX相当; 用于终末冲洗时, QMix去除玷污层的效果与17%EDTA无明显差异, 但QMix能显著提高牙本质粘接强度和抗折能力[35, 36, 37]

QMix对内毒素(lipopolysaccharide, LPS)的清除能力优于其他冲洗剂[38]。LPS在感染根管和根尖区检出率为100%, 通过促进单核细胞和巨噬细胞释放肿瘤坏死因子、白细胞介素等促炎因子, 促使根尖周炎发生, 因此清除LPS可促进根尖周病变愈合[39]。QMix中EDTA使LPS从活菌细胞壁及牙本质深层释放, 且能与脂质A(LPS毒性和生物学活性的主要组分)螯合。西曲溴铵不仅作为表面活性剂乳化LPS, 还能与脂质A发生非极性反应, 将内毒素限制于胶束结构中, 随冲洗剂溢出根管得到清除[39]

QMix中CHX浓度低, 与次氯酸钠反应产生的沉淀量比单独用CHX显著减少, 且使用过程中未检测到对氯苯胺的产生[40]。Chandrasekhar等[41]在Wistar大鼠皮下注射后对炎症反应的观察发现, QMix的毒性低于3%次氯酸钠、2%CHX和17% EDTA。

此外, Kara Tuncer等[32]用QMix作终末冲洗, 没有观察到牙本质受侵蚀, QMix对牙本质硬度的影响和17%EDTA/2%CHX相似。因此, 目前推荐使用的冲洗策略是以次氯酸钠和EDTA交替使用作为主要方法, 在用H2O2或生理盐水清除次氯酸钠后, 以2%CHX或QMix作封药前的终末冲洗。

2 根管冲洗方法

根管冲洗系统能够在工作长度内将冲洗剂输送至根管系统各部位, 不断更新, 并对根管壁产生一定机械力量, 发挥输送和活化冲洗剂的作用。传统针头冲洗因机械冲刷能力弱、针头进入弯曲根管深度有限, 冲洗效果常受影响。因此, 需辅以其他冲洗技术, 如超声系统(ultrasonic irrigation, UI)、根尖负压系统(apical negative pressure, ANP)、激光(laser activation system, LAS)等, 完成根管清洁。

2.1 根尖负压系统与超声系统

根管冲洗的难点在于根尖1/3的清洁, 次氯酸钠溶解有机物时, 产生的CO2和NH3形成气泡困于根尖, 形成蒸汽锁效应。蒸汽锁效应是指液体进入末端闭合的毛细管时, 气体栓塞于毛细管末端, 使液体无法完全渗透的现象。根管治疗中根尖区的蒸汽锁效应限制了冲洗剂与根尖部根管壁的有效接触, 而根管预备所使用的根管锉、冲洗针头等尖锐器械进入根尖区无法刺破气泡和促使气泡溢出, 不能解除蒸汽锁效应。如果在根尖形成根尖负压或有效微流, 破坏牙本质、气体、液体间的界面力平衡, 则能解除蒸汽锁效应, 使冲洗剂充分到达根尖部。

ANP能够在根尖部形成真空压力, 消除蒸汽锁效应, 将冲洗剂安全输送至工作长度并限制其冲出根尖孔[42]。目前的商品化设备包括EndoVac系统、GentleWave系统等。SybronEndo推出的Endo-Vac是第一个基于ANP原理设计的商品化系统, 主要由输送端、外径0.6 mm的大管和外径0.32 mm的小管3部分组成。进行根管冲洗时, 输送端从冠部向髓室内注入冲洗剂, 同时分别用能够深入根管中段的大管或能够到达工作长度的小管不断自根管深部抽吸冲洗剂。这种抽吸作用不仅可以解除根尖区的蒸汽锁效应使冲洗剂到达根尖部, 还能够增强冲洗剂的循环流动, 促进感染物的清除。EndovacPure是Kerr公司最新推出的一款EndoVac产品, 其将输送端、大管和小管集成于同一手柄, 便于操作。对患者口内单根管患牙分别用EndoVac、传统针头配合3%次氯酸钠/EDTA进行冲洗, 拔除患牙后发现距根尖1 mm处EndoVac组的碎屑显著少于传统针头组[43, 44, 45]

UI则主要通过高频震荡产生声流、空穴和热效应, 活化冲洗剂。微声流可抵抗蒸汽锁效应, 将冲洗剂输送至侧支根管等复杂区域, 同时对根管壁产生机械冲刷作用。目前UI在临床治疗中主要应用设备是被动超声冲洗(passive ultrasonic irrigation, PUI)系统, 即使用非切割功能的超声尖对根管系统进行超声荡洗, 避免对根管壁造成无规则切割。代表产品IrriSafe具有非切割螺纹表面和钝性尖端, 振动产生的微声流可增强冲洗液的抗菌效果, 并促进冲洗剂深入牙本质小管和侧支根管; 同时IrriSafe振动产生的热效应还能增强次氯酸钠的组织溶解作用, 促进玷污层的清除。

许多针对根尖周炎患牙的研究[46, 47, 48, 49]证实了ANP和PUI对根尖1/3段的清创作用。Munoz等[50]在临床上选取了30位患者随机分为3组, 对其下颌磨牙分别用EndoVac、PUI+IrriSafe和传统针头, 配合次氯酸钠冲洗, 注入显影剂拍X线片, 结果显示与传统针头组相比, PUI和EndoVac能更有效地将冲洗剂输送至工作长度。另有体外研究[51]发现, PUI将冲洗剂输送至侧支根管的能力显著优于其他系统, 而ANP能更有效的将冲洗剂输送至工作长度, 因此两者联合应用, 可促进冲洗剂到达工作长度和深入侧支根管, 显著增强根管冲洗的清创效果。

在安全性方面, Al-Nahlawi等[52]选取了75位患者, 随机分为EndoVac+生理盐水(室温)、EndoVac+生理盐水(2~4 ℃)及空白对照(根备后不冲洗)3组进行根管预备和冲洗, 观察术后疼痛发现:EndoVac+生理盐水(2~4 ℃)组术后无明显疼痛, 且EndoVac能显著减少术后6 h的疼痛发生。此外, 还有研究[53]显示, ANP的术后疼痛和炎症反应比针头冲洗和PUI更少, 安全性更好。

2.2 激光活化系统

铒(Er)家族激光包括Er:YAG激光(波长2 940 nm)和Er, Cr:YSGG激光(波长2 780 nm), 对水和羟磷灰石有高亲和力, 可产生强烈的空穴效应和冲击波活化冲洗剂, 在根管壁形成快速流动和高剪切应力; 激光还可产生活性氧破坏生物膜, 直接加速细菌死亡。铒家族激光被认为是最适用于激光活化冲洗的一类激光, 其最显著的特点是远程杀菌效能, 但根管中复杂多变的结构会导致铒激光的光机械效能由冠向下逐渐降低。研究[54]表明, 铒激光纤维头与解剖根尖保持2~3 mm较好; 也有学者[55]建议放在距根尖止点5 mm处以防冲洗剂出根尖孔。目前常见的铒家族激光品牌有:Fotona公司生产的Fidelis激光器、Biolase公司的Waterlase激光器等。

光子激光声流系统(photon-initiated photoa-coustic streaming, PIPS)是由传统铒激光发展而来的另一种新型激光冲洗系统, 应用低能量Er:YAG激光和微秒脉冲产生光声压力波, 使冲洗剂在三维方向振动并到达根管内各部位。PIPS与传统Er:YAG激光系统的主要区别是其特殊设计的锥形激光头, 尖端是从鞘内伸出的3 mm裸露纤维, 冲洗时仅将激光头3 mm置于髓室而不必进入根管, 有利于降低冲洗剂受压力冲出根尖孔的风险, 提高根管治疗的安全性。此外, Er:YAG激光可引起根管碳化或温度升高, 而PIPS的次剥脱能级产热少, 不产生热损伤。

与传统Er:YAG激光系统相比, PIPS能开放更多牙本质小管, 对根管壁清洁效果更好。6%次氯酸钠联合90 s PIPS/Er:YAG+90 s间歇期的循环, 能观察到粪肠球菌“ 零再生” 现象[56], 能更有效的清除生物膜和牙本质碎屑[57, 58]。但也有研究显示PIPS/Er:YAG、声波冲洗、针头冲洗对2.5%次氯酸钠和QMix的活化作用无显著差异, 这可能与次氯酸钠浓度有关, 而6%次氯酸钠是否为PIPS最佳选择还有待证实[59]

2.3 根管冲洗新技术

光动力疗法(photodynamic therapy, PDT)是一种新型抗菌系统, 其利用特定波长光, 在氧存在时激活无毒光敏剂(如亚甲基蓝、甲苯胺蓝、姜黄素等), 产生细胞毒性物质, 对抗耐药菌和革兰阳性菌。次氯酸钠联合PDT可杀灭原发感染根管中90%以上感染微生物[60]。粪肠球菌对亚甲基蓝的敏感性强, 利用0.001%~0.01%亚甲基蓝, 可清除99.9%~100%的粪肠球菌; 因此PDT可有效清除牙本质小管深层的粪肠球菌[61]。此外, PDT还能扰乱LPS生物活性, 促进根尖周病变愈合。

因此, PDT有利于优化根管治疗, 次氯酸钠/EDTA交替冲洗联合PDT循环使用可作为彻底清洁粪肠球菌污染根管的潜在策略[62]

3 小结

综上所述, 提供足量有效氯、增加次氯酸钠对牙本质小管的渗透深度、破坏生物膜对冲洗剂的耐受, 可增强次氯酸钠的抗菌作用; 联合应用CHX、EDTA或QMix等其他冲洗剂, 能使根管得到更有效的清洁。此外, ANP、UI、PDT等辅助系统和新技术的应用, 能够更安全有效的输送与活化冲洗剂, 优化根管冲洗。如何彻底清除根管内的感染, 提高根管根尖1/3的清洁效率, 促进根尖周病变愈合, 仍有待进一步研究。

The authors have declared that no competing interests exist.

参考文献
[1] Estrela C, Estrela CR, Barbin EL, et al. Mechanism of action of sodium hypochlorite[J]. Braz Dent J, 2002, 13(2): 113-117. [本文引用:1]
[2] Tulsani SG, Chikkanarasaiah N, Bethur S. An in vivo comparison of antimicrobial efficacy of sodium hy-pochlorite and Biopure MTAD™ against Enteroco- ccus faecalis in primary teeth: a qPCR study[J]. J Clin Pediatr Dent, 2014, 39(1): 30-34. [本文引用:1]
[3] Siqueira JF Jr, Rôças IN, Favieri A, et al. Chemome-chanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2. 5%, and 5. 25% sodium hypochlorite[J]. J Endod, 2000, 26(6): 331-334. [本文引用:2]
[4] Mercade M, Duran-Sindreu F, Kuttler S, et al. An-timicrobial efficacy of 4. 2% sodium hypochlorite adjusted to pH 12, 7. 5, and 6. 5 in infected human root canals[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 107(2): 295-298. [本文引用:2]
[5] Camps J, Pommel L, Aubut V, et al. Shelflife, disso-lving action, and antibacterial activity of a neutra-lized 2. 5% sodium hypochlorite solution[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 108(2): e66-e73. [本文引用:2]
[6] Rossi-Fedele G, Guastalli AR, Doğramacı EJ, et al. Influence of pH changes on chlorine-containing en-dodontic irrigating solutions[J]. Int Endod J, 2011, 44(9): 792-799. [本文引用:1]
[7] Guerreiro-Tanomaru JM, Morgental RD, Flumignan DL, et al. Evaluation of pH, available chlorine con-tent, and antibacterial activity of endodontic irrigants and their combinations against Enterococcus faecalis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 112(1): 132-135. [本文引用:1]
[8] Kinoshita N, Unemoto T, Kobayashi H. Proton mo-tive force is not obligatory for growth of Escherichia coli[J]. J Bacteriol, 1984, 160(3): 1074-1077. [本文引用:1]
[9] Gand i P, Vasireddi SR, Gurram SR, et al. Evaluation of the antibacterial efficacy of omeprazole with so-dium hypochlorite as an endodontic irrigating solu-tion—an in vivo study[J]. J Int Oral Health, 2013, 5(2): 14-20. [本文引用:1]
[10] Wagner C, Barth VC Jr, de Oliveira SD, et al. Effec-tiveness of the proton pump inhibitor omeprazole associated with calcium hydroxide as intracanal medication: an in vivo study[J]. J Endod, 2011, 37(9): 1253-1257. [本文引用:1]
[11] Bolfoni MR, Ferla Mdos S, Sposito Oda S, et al. Effect of a surfactant on the antimicrobial activity of sodium hypochlorite solutions[J]. Braz Dent J, 2014, 25(5): 416-419. [本文引用:2]
[12] Bukiet F, Couderc G, Camps J, et al. Wetting pro-perties and critical micellar concentration of benzal-konium chloride mixed in sodium hypochlorite[J]. J Endod, 2012, 38(11): 1525-1529. [本文引用:1]
[13] Guastalli AR, Clarkson RM, Rossi-Fedele G. The effect of surfactants on thestability of sodium hy-pochlorite preparations[J]. J Endod, 2015, 41(8): 1344-1348. [本文引用:1]
[14] Aslantas EE, Buzoglu HD, Altundasar E, et al. Effect of EDTA, sodium hypochlorite, and chlorhexidine gluconate with or without surface modifiers on dentin microhardness[J]. J Endod, 2014, 40(6): 876-879. [本文引用:1]
[15] Baron A, Lindsey K, Sidow SJ, et al. Effect of a benzalkonium chloride surfactant-sodium hypoch-lorite combination on elimination of Enterococcus faecalis[J]. J Endod, 2016, 42(1): 145-149. [本文引用:1]
[16] Rico-Romano C, Zubizarreta-Macho Á, Baquero-Artigao MR, et al. An analysis in vivo of intracanal bacterial load before and after chemo-mechanical preparation: a comparative analysis of two irrigants and two activation techniques[J]. J Clin Exp Dent, 2016, 8(1): e9-e13. [本文引用:1]
[17] Mohammadi Z, Abbott PV. Antimicrobial substan-tivity of root canal irrigants and medicaments: a review[J]. Aust Endod J, 2009, 35(3): 131-139. [本文引用:1]
[18] Mahendra A, Koul M, Upadhyay V, et al. Compara-tive evaluation of antimicrobial substantivity of dif-ferent concentrations of chlorhexidine as a root canal irrigant: an in vitro study[J]. J Oral Biol Craniofac Res, 2014, 4(3): 181-185. [本文引用:1]
[19] María Ferrer-Luque C, Teresa Arias-Moliz M, Ruíz-Linares M, et al. Residual activity of cetrimide and chlorhexidine on Enterococcus faecalis-infected root canals[J]. Int J Oral Sci, 2014, 6(1): 46-49. [本文引用:1]
[20] Mohammadi Z, Asgary S. A comparative study of antifungal activity of endodontic irrigants[J]. Iran Endod J, 2015, 10(2): 144-147. [本文引用:1]
[21] Ma J, Tong Z, Ling J, et al. The effects of sodium hypochlorite and chlorhexidine irrigants on the anti-bacterial activities of alkaline media against Entero- coccus faecalis[J]. Arch Oral Biol, 2015, 60(7): 1075-1081. [本文引用:1]
[22] Sinha N, Patil S, Dodwad PK, et al. Evaluation of antimicrobial efficacy of calcium hydroxide paste, chlorhexidine gel, and a combination of both as in-tracanal medicament: an in vivo comparative study[J]. J Conserv Dent, 2013, 16(1): 65-70. [本文引用:1]
[23] Rossi-Fedele G, Doğramaci EJ, Guastalli AR, et al. Antagonistic interactions between sodium hypochlo-rite, chlorhexidine, EDTA, and citric acid[J]. J Endod, 2012, 38(4): 426-431. [本文引用:1]
[24] Cintra LT, Watanabe S, Samuel RO, et al. The use of NaOCl in combination with CHX produces cyto-toxic product[J]. Clin Oral Investig, 2014, 18(3): 935-940. [本文引用:1]
[25] Mirhadi H, Abbaszadegan A, Ranjbar MA, et al. Antibacterial and toxic effect of hydrogen peroxide combined with different concentrations of chlorhe-xidine in comparison with sodium hypochlorite[J]. J Dent (Shiraz), 2015, 16(4): 349-355. [本文引用:1]
[26] Barrios R, Ferrer-Luque CM, Arias-Moliz MT, et al. Antimicrobial substantivity of alexidine and chlo-rhexidine in dentin[J]. J Endod, 2013, 39(11): 1413-1415. [本文引用:1]
[27] Soares JA, Roque de Carvalho MA, Cunha Santos SM, et al. Effectiveness of chemomechanical pre-paration with alternating use of sodium hypochlorite and EDTA in eliminating intracanal Enterococcus faecalisbiofilm[J]. J Endod, 2010, 36(5): 894-898. [本文引用:1]
[28] Mai S, Kim YK, Arola DD, et al. Differential aggre-ssiveness of ethylenediamine tetraacetic acid in causing canal wall erosion in the presence of sodium hypoch-lorite[J]. J Dent, 2010, 38(3): 201-206. [本文引用:1]
[29] Ozdemir HO, Buzoglu HD, Calt S, et al. Chemical and ultramorphologic effects of ethylenediaminetetraacetic acid and sodium hypochlorite in young and old root canal dentin[J]. J Endod, 2012, 38(2): 204-208. [本文引用:1]
[30] Saghiri MA, Delvarani A, Mehrvarzfar P, et al. A study of the relation between erosion and micro-hardness of root canal dentin[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 108(6): e29-e34. [本文引用:1]
[31] Taneja S, Kumari M, Anand S. Effect of QMix, peracetic acid and ethylenediamine tetraacetic acid on calcium loss and microhardness of root dentine[J]. J Conserv Dent, 2014, 17(2): 155-158. [本文引用:1]
[32] Kara Tuncer A, Tuncer S, Siso SH. Effect of QMix irrigant on the microhardness of root canal dentine[J]. Aust Dent J, 2015, 60(2): 163-168. [本文引用:2]
[33] Ulusoy Öİ, Görgül G. Effects of different irrigation solutions on root dentine microhardness, smear layer removal and erosion[J]. Aust Endod J, 2013, 39(2): 66-72. [本文引用:1]
[34] Lottanti S, Gautschi H, Sener B, et al. Effects of ethylenediamine tetraacetic, etidronic and peracetic acid irrigation on human root dentine and the smear layer[J]. Int Endod J, 2009, 42(4): 335-343. [本文引用:1]
[35] Zhang R, Chen M, Lu Y, et al. Antibacterial and residual antimicrobial activities against Enterococcus faecalis biofilm: a comparison between EDTA, chl-orhexidine, cetrimide, MTAD and QMix[J]. Sci Rep, 2015, 5: 12944. [本文引用:1]
[36] Dai L, Khechen K, Khan S, et al. The effect of Q- Mix, an experimental antibacterial root canal irrigant, on removal of canal wall smear layer and debris[J]. J Endod, 2011, 37(1): 80-84. [本文引用:1]
[37] Uzunoglu E, Yilmaz Z, Erdogan O, et al. Final irri-gation regimens affect fracture resistance values of root-filled teeth[J]. J Endod, 2016, 42(3): 493-495. [本文引用:1]
[38] Gründling GL, Melo TA, Montagner F, et al. QMix® irrigant reduces lipopolysacharide (LPS) levels in an in vitro model[J]. J Appl Oral Sci, 2015, 23(4): 431-435. [本文引用:1]
[39] Magalhães PO, Lopes AM, Mazzola PG, et al. Me-thods of endotoxin removal from biological prepara-tions: a review[J]. J Pharm Pharm Sci, 2007, 10(3): 388-404. [本文引用:2]
[40] Arslan H, Uygun AD, Keskin A, et al. Evaluation of orange-brown precipitate formed in root canals after irrigation with chlorhexidine and QMix and spe-ctroscopic analysis of precipitates produced by a mixture of chlorhexidine/NaOCl and QMix/NaOCl[J]. Int Endod J, 2015, 48(12): 1199-1203. [本文引用:1]
[41] Chand rasekhar V, Amulya V, Rani VS, et al. Evaluation of biocompatibility of a new root canal irrigant Q Mix™ 2 in 1—An in vivo study[J]. J Conserv Dent, 2013, 16(1): 36-40. [本文引用:1]
[42] Gupta J, Nikhil V, Jha P. Corelation between ma-chines assisted endodontic irrigant agitation and apical extrusion of debris and irrigant: a laboratory study[J]. Sci World J, 2014, 2014: 346184. [本文引用:1]
[43] Kungwani ML, Prasad KP, Khiyani TS. Comparison of the cleaning efficacy of EndoVac with conven-tional irrigation needles in debris removal from root canal. An in-vivo study[J]. J Conserv Dent, 2014, 17(4): 374-378. [本文引用:1]
[44] Dua A, Dua D. Comparative evaluation of efficacy of EndoVac irrigation system to Max-Ⅰ probe in removing smear layer in apical 1 mm and 3 mm of root canal: an in vitro scanning electron microscope study[J]. Dent Res J (Isfahan), 2015, 12(1): 38-43. [本文引用:1]
[45] Siu C, Baumgartner JC. Comparison of the debride-ment efficacy of the EndoVac irrigation system and conventional needle root canal irrigation in vivo[J]. J Endod, 2010, 36(11): 1782-1785. [本文引用:1]
[46] Cachovan G, Schiffner U, Altenhof S, et al. Com-parative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro[J]. J Endod, 2013, 39(9): 1171-1175. [本文引用:1]
[47] Cohenca N, Silva LA, Silva RA, et al. Microbiolo-gical evaluation of different irrigation protocols on root canal disinfection in teeth with apical periodon-titis: an in vivo study[J]. Braz Dent J, 2013, 24(5): 467-473. [本文引用:1]
[48] Ahuja P, Nand ini S, Ballal S, et al. Effectiveness of four differentfinal irrigation activation techniques on smear layer removal in curved root canals: a scanning electron microscopy study[J]. J Dent (Tehran), 2014, 11(1): 1-9. [本文引用:1]
[49] AkyuzEkim SN, Erdemir A. Comparison of different irrigation activation techniques on smear layer re-moval: an in vitro study[J]. Microsc Res Tech, 2015, 78(3): 230-239. [本文引用:1]
[50] Munoz HR, Camacho-Cuadra K. In vivo efficacy of three different endodontic irrigation systems for irri-gant delivery to working length of mesial canals of mand ibular molars[J]. J Endod, 2012, 38(4): 445-448. [本文引用:1]
[51] Spoorthy E, Velmurugan N, Ballal S, et al. Comparison of irrigant penetration up to working length and into simulated lateral canals using various irrigating te-chniques[J]. Int Endod J, 2013, 46(9): 815-822. [本文引用:1]
[52] Al-Nahlawi T, Hatab TA, Alrazak MA, et al. Effect of intracanal cryotherapy and negative irrigation technique on postendodontic pain[J]. J Contemp Dent Pract, 2016, 17(12): 990-996. [本文引用:1]
[53] Cohenca N, Romualdo PC, da Silva LA, et al. Tissue response to root canal irrigation systems in dogs’ teeth with apical periodontitis[J]. Clin Oral Investig, 2015, 19(5): 1147-1156. [本文引用:1]
[54] Matsuoka E, Jayawardena JA, Matsumoto K. Mor-phological study of the Er, Cr: YSGG laser for root canal preparation in mand ibular incisors with curved root canals[J]. Photomed Laser Surg, 2005, 23(5): 480-484. [本文引用:1]
[55] George R, Walsh LJ. Apical extrusion of root canal irrigants when using Er: YAG and Er, Cr: YSGG lasers with optical fibers: an in vitro dye study[J]. J Endod, 2008, 34(6): 706-708. [本文引用:1]
[56] Al Shahrani M, DiVito E, Hughes CV, et al. Ehanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: an in vitro study[J]. Photomed Laser Surg, 2014, 32(5): 260-266. [本文引用:1]
[57] Ordinola-Zapata R, Bramante CM, Aprecio RM, et al. Biofilm removal by 6% sodium hypochlorite ac-tivated by different irrigation techniques[J]. Int Endod J, 2014, 47(7): 659-666. [本文引用:1]
[58] Wang Z, Shen Y, Haapasalo M. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals[J]. J Endod, 2012, 38(10): 1376-1379. [本文引用:1]
[59] Balić M, Lucić R, Mehadžić K, et al. The efficacy of photon-initiated photoacoustic streaming and sonic-activated irrigation combined with QMiX solution or sodium hypochlorite against intracanal E. faecalisbiofilm[J]. Lasers Med Sci, 2016, 31(2): 335-342. [本文引用:1]
[60] Tennert C, Drews AM, Walther V, et al. Ultrasonic activation and chemical modification of photosensi-tizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates[J]. Photodiagnosis Photodyn Ther, 2015, 12(2): 244-251. [本文引用:1]
[61] Bumb SS, Bhaskar DJ, Agali CR, et al. Assessment of photodynamic therapy (PDT) in disinfection of deeper dentinal tubules in a root canal system: an in vitro study[J]. J Clin Diagn Res, 2014, 8(11): ZC67-ZC71. [本文引用:1]
[62] Wang Y, Xiao S, Ma D, et al. Minimizing concen-tration of sodium hypochlorite in root canal irrigation by combination of ultrasonic irrigation with photody-namic treatment[J]. Photochem Photobiol, 2015, 91(4): 937-941. [本文引用:1]